Some characteristics of the combined PHENIX upgrade inner tracker: TPC + Barrel Silicon Vertex Detector (VXD) V. L. Rykov RIKEN Radiation Laboratory ## **Outlook:** - ✓ Design parameters. - ✓ Single-track simulation model. - ✓ Momentum resolution. - ✓ Impact parameter resolution. - √ Brief summary. # PHENIX upgrade with a Inner Tracker ## PHENIX Inner Tracker Design Parameters #### TPC: - > 35 tracking layers at the radii from 20 to 55 cm. - ho $\sigma_{r\phi} \approx 250$ μm, $\sigma_{z} \approx 300$ μm. *Barrel VXD:* - \triangleright 2 pixel and 2 μ -strip layers at the radii from 2.5 to 10 cm. - $\gt \sigma_{r_0} \approx 14-23 \ \mu m$ - $\triangleright \sigma_z \approx 120-300 \ \mu \text{m}$ #### *TPC tracking coverage: $$\Delta \varphi = 2\pi$$ -0.7 (-1) < η < +0.7 (+1) #### **❖** VXD tracking coverage: $$\Delta \phi$$ = 320° (Barrel) to 2π (Endcap) -2.7 (-3.4) < η < +2.7 (+3.4) #### ❖ Central Arm coverage: $$\Delta \varphi = \pi/2 + \pi/2;$$ -0.35 < η < +0.35 ## **Silicon Vertex Detector** #### **Conceptual Mechanical Specifications** Central Barrel layer radius 2.5,6,8,10 cm layer length 30 cm pixel size 50 μ m x 425 μ m strips 80 μ m x 1mm (3cm) pixels(1st layer) ~1.9M strips(2nd,3rd,4th layer) ~165k azimuthal coverage 320 deg End Caps (each) inner radius 2.5 cm outer radius 18 cm disk z pos.(at r_{in} = 2.5cm) 20,26,32,38 cm pixel size 50 µm x 4 mm total pixels ~2.0M azimuthal coverage 360 deg ## Simulation model - > **Geometry**: Parallel flat tracking layers. - Particle trajectories in the uniform magnetic field generated, taking into account small angle multiple scattering (β=1) in the detector material, beam pipe, air, etc. Ionization and radiation energy losses ignored. - The positions of the track crossing points in each layer randomly Gaussian smeared with the respective design *position resolutions*. - \succ At this stage, the **vertex transverse position** (σ_{xy}), if used, has been assumed at 20 μm with the VXD used, and 50 μm for the TPC only. - For the **helical trajectory reconstruction**, the *full initial covariance matrix* has been used, taking into account *cross-correlations* of the track crossing points in the tracking layers *due to multiple scattering*. ## Momentum resolution, B = 9 kGs ### Comparison of the momentum resolutions: - PHENIX Central Arm - VXD standalone - TPC standalone - ❖ VXD + TPC # Impact parameter resolution, B = 9 kGs Signal: Heavy Flavor $\rightarrow e^{\pm}X$ DCA > 0 Background: *Prompt* e[±] DCA = 0 Known "zero field": σ_{DCA} would be the same as for $B \neq 0$. ❖Unknown "zero field" (B ~150 Gs) – using straight line fit in the VXD only: At $P_T > 0.2$ -0.3 GeV/c expect σ_{DCA} about the same as for the known momentum. # Example of using DCA distributions pp at $\sqrt{S} = 200$ GeV: ➤ Heavy flavor: *PYTHIA* \triangleright Dalitz: from PHENIX measured π^0 ## Summary: Everybody in the team does its job! - The shown examples illustrate the *complementarities* of the two parts, *TPC & VXD*, of the proposed new PHENIX *Inner Tracker*. - The momentum and DCA resolutions, combined with the electron identification provided by the HBD, seem to be sufficient for treating the Inner Tracker as a capable "standalone" PHENIX sub-detector for doing a substantial physics (heavy flavor, jets with charged, ...) in the extended acceptance of about $-0.7 < \eta < 0.7$; $\Delta \varphi \approx 2\pi$. # Impact parameter resolution, B = 9 kGs Simulation result: σ_{DCAL} < 50 μ at P_T > 0.65–1 GeV/c